
DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes
Using Velocity Obstacles

Zhanteng Xie and Philip Dames

Abstract— This paper proposes a novel learning-based con-
trol policy with strong generalizability to new environments that
enables a mobile robot to navigate autonomously through spaces
filled with both static obstacles and dense crowds of pedestrians.
The policy uses a unique combination of input data to generate
the desired steering angle and forward velocity: a short history
of lidar data, kinematic data about nearby pedestrians, and a
sub-goal point. The policy is trained in a reinforcement learning
setting using a reward function that contains a novel term
based on velocity obstacles to guide the robot to actively avoid
pedestrians and move towards the goal. A series of experiments
in detailed simulated environments demonstrate the efficacy
of this policy, which is able to achieve a higher success rate
and a higher average speed than either standard model-based
planners or state-of-the-art neural network control policies.

I. INTRODUCTION

One common application of autonomous mobile robots
is replacing manual labor to provide last-mile delivery ser-
vices. For example, delivering sterile supplies and injection
medicines to patients in hospitals, delivering materials to
various packaging workstations in warehouses, and deliver-
ing delicious food or groceries to customers in restaurants
and grocery stores [1]–[3]. All these tasks have time limits
and require mobile robots to navigate autonomously and
quickly to destinations through a partially known space
filled with moving people and other static obstacles. The
main challenges faced by these mobile robots are perceiving
complex environments, especially unknown and dynamic
pedestrians; extracting useful information; and generating a
policy that yields autonomous navigation.

There is an abundance of studies that focus on robot
navigation problems, with solutions ranging from tradi-
tional model-based approaches to learning-based approaches
(i.e., supervised learning-based approaches and reinforce-
ment learning-based approaches). Typical model-based ap-
proaches compute efficient paths and the parameters are
easily interpretable, but require manually adjusting model
parameters for different scenarios, making them difficult
to implement and adapt to new settings [4]–[15]. On the
other hand, learning-based methods utilize machine learning
techniques to automate these model generation and parameter
tuning steps, either in a supervised setting using expert
demonstrations or in a reinforcement learning setting using
trial and error. Supervised learning-based approaches are
purely data-driven and easy to use, but only work well in

*This work was funded by the Amazon Research Awards Program, NSF
grant IIS-1830419, and Temple University.

Zhanteng Xie and Philip Dames are with the Department of
Mechanical Engineering, Temple University, Philadelphia, PA, USA
{zhanteng.xie, pdames}@temple.edu

static or sparse dynamic environments and require labori-
ously collecting a representative set of expert demonstrations
to train networks [16]–[21]. Reinforcement learning-based
approaches are experience-driven, similar to human learning,
and work in crowded dynamic environments, but typically
rely solely on simulated data and require carefully designing
a reward function [22]–[38].

Although each type of approach has its own advantages
and disadvantages, we choose the deep reinforcement learn-
ing (DRL) -based framework to design a crowd-aware navi-
gation control policy to address crowded dynamic navigation
because it is difficult to manually design a general model or
collect effective training data in uncontrolled and human-
filled environments. The reward function design also gives
us more freedom to integrate the strengths of model-based
and learning-based approaches. In this paper, our primary
contribution is designing a novel velocity obstacle (VO)-
based reward function, which effectively guides the robot to
learn a robust navigation policy with a good balance between
collision avoidance and speed. Another key distinction is
that we create a novel combination of preprocessed data
representations for the input to our neural network-based
control policy, using a short history of pooled lidar data,
the current kinematics of nearby pedestrians, and a sub-goal
point. We demonstrate the efficacy of our approach through a
series of simulated experiments, showing that our approach
achieves a better balance between collision avoidance and
speed, and generalizes to unseen environments and crowd
sizes better than state-of-art approaches, including a model-
based controller [4], a supervised learning-based approach
[21], and two DRL-based approaches [24]. Note that the full
version of the paper and more details can be found in [39].

II. NAVIGATION POLICY

In this section, we formulate the navigation problem, with
a focus on safety and speed through dynamic environments.
We then detail our DRL-based approach, describing the pre-
processed observation space, the DRL network architecture,
and the novel VO-based reward function design.

A. Problem Formulation

In order to autonomous navigate to a goal through a dy-
namic environment with moving pedestrians, the robot must
extract useful information from its sensors and process this
information to get the partial observation of the environment,
ot. The robot then uses this partial observation ot to compute
the suitable steering action at via a control policy πθ, which



FC
, C

=2
56

Sub-goal Point: 
2 x 1

gx

gy

1x
1 

C
on

v2
d,

 C
,S

3x
3 

C
on

v2
d,

 C

1x
1 

C
on

v2
d,

 2
*C

   
1x

1 
C

on
v2

d,
 C

   
3x

3 
C

on
v2

d,
 C

1x
1 

C
on

v2
d,

 2
*C

 3
x3

 M
ax

P
oo

l2
d,

C
=6

4

   
 3

x3
 C

on
v2

d,
C

=6
4

B
ot

tle
ne

ck
 

B
lo

ck
s:

C
=6

4,
S

=1

B
ot

tle
ne

ck
 

B
lo

ck
s:

C
=1

28
,S

=2

B
ot

tle
ne

ck
 

B
lo

ck
s:

C
=2

56
,S

=2

1x
1 

A
da

pt
iv

eA
vg

P
oo

l2
d

Lidar Map: 
1 x 80 x 80  F

C
, C

=1

V(s)

Value:
1 x 1

 F
C

, C
=1

28

Critic

Hokuyo Lidar

ZED Camera

Goal Point

 Feature Generation

 F
C

, C
=2  Vx

 Wz

Action:
2 x 1

 F
C

, C
=2

56

Actor

 Feature Extractor

Pedestrian Maps: 
2 x 80 x 80

 DRL NetworkSensors

X

Y

X

Y 2

Mapping
YOLOv3 
& MHT

Min & Avg 
PoolingStacking

Pure Pursuit Algorithm

Fig. 1. Overall system architecture of our DRL-VO control policy.

takes the form of a parametric model

at ∼ πθ(a
t|ot), (1)

where θ are our model parameters. This complicated navi-
gation decision-making process can be formulated as a large
partially observable Markov decision process (POMDP). The
deep reinforcement learning approach is a typical method to
solve such a large POMDP [40].

B. Observation Space

The observation ot = [pt, lt,gt] has three components in
our control policy: pedestrian kinematics (pt), lidar history
(lt), and the sub-goal position (gt). Note, all data in the
observation ot is expressed in the local robot frame.

1) Pedestrian Kinematics Observation: To extract infor-
mation about pedestrians, we first feed the raw stereo camera
data into the YOLOv3 [41] object detector to obtain bound-
ing boxes and then extract the corresponding points from the
3-D point cloud to measure the pedestrian positions. These
position measurements are fed into a multiple hypothesis
tracker (MHT) [42], which performs data association to yield
a collection of target tracks containing relative position and
velocity information. Finally, we encode the pedestrian kine-
matics into occupancy grid-style maps specifically designed
for our network architecture, as the ZED Camera track in
the Feature Generation block of Fig. 1 shows.

2) Lidar History Observation: Most initial works using
learning-based policies for robot navigation used the entire
lidar scan message. However, our early fusion architecture
requires that lidar feature map to be the same size as the
pedestrian feature maps. Thus, we need to convert the lidar
data into an 80×80 feature map. Motivated by the lidar data
downsampling operation from [43], we use a combination
of minimum pooling and average pooling to extract two
separate distance measurements per scan region, as the
Hokuyo Lidar track in the Feature Generation block of Fig. 1
shows, a process we found to yield the best performance.

3) Goal Position Observation: With the observation data
from sensors, the robot also needs to know where the goal
position is. Instead of feeding the final goal point to our DRL
network, we choose the sub-goal point from a nominal path

as our goal position observation. We use the pure pursuit
algorithm [44] to extract this sub-goal point, as the Goal
Point track in the Feature Generation block of Fig. 1 shows.

C. Action Space

The action at = [vtx, w
t
z] of our DRL control policy are the

steering velocities, where vtx is the translational velocity and
wt

z is the rotational velocity in the robot’s local coordinate
frame. Note: The action space is a continuous space. The
range of the translational velocity vtx is set to [0, 0.5], and
the range of the rotational velocity wt

z is set to [−2, 2].

D. Network Architecture

The Feature Extractor network is identical to the backbone
CNN network of our previous work [21], which fuses the
lidar historical observation lt and pedestrian kinematics
observation pt. We use the PPO algorithm to train our DRL
network, and use Adam optimizer [45], a stochastic gradient
descent method, to find the optimal model parameters θ∗.

E. Reward Function

Navigation has two competing objectives, we want the
robot to move as quickly to reach the goal in minimum time
but also safely to avoid colliding with any stationary objects
or moving pedestrians. Thus, we design a multiobjective
reward function:

rt = rtg + rtc + rtw + rtd (2)

where rtg making progress towards the goal, rtc penalizes
passively approaching or colliding with an obstacle, rtw
penalizes rapid changes in direction, and rtd rewards actively
steering to avoid obstacles and point towards the sub-goal.

1) Reaching the Goal: The reward is given by

rtg =


rgoal if ∥ptg∥) < gm

−rgoal else if t ≥ tmax

rpath(∥pt−1
g ∥ − ∥ptg∥) otherwise,

(3)

where ptg is the goal position (in the robot’s frame) at time
t. We use rgoal = 20, rpath = 3.2, gm = 0.3m, and tmax =
25 s.



Fig. 2. The geometric pictogram for velocity obstacle V OA,B , collision
cone CCA,B , and special occupancy SOA,B .

2) Passive Collision Avoidance: The reward is given by

rtc =


rcollision if ∥pto∥ ≤ dr

robstacle(dm − ∥pto∥) else if ∥pto∥ ≤ dm

0 otherwise,
(4)

where pto is obstacle position at time t. We use rcollision =
−20, robstacle = −0.2, dr = 0.3m, and dm = 1.2m.

3) Path Smoothness: The reward is given by

rtw =

{
rrotation|ωt

z| if |ωt
z| > ωm

0 otherwise,
(5)

where rrotation = −0.1 and ωm = 1 rad/s.
4) Active Heading Direction: The reward is given by

rtd = rangle(θm − |θtd|), (6)

where θtd is the desired heading direction in the robot’s local
frame and θm is the maximum allowable deviation of the
heading direction. We use rangle = 0.6 and θm = π

6 rad.
The key to this reward term is to find the desired direction

that moves towards the goal while also being collision free.
To do this, we extend the concept of velocity obstacles [5],
which create a collision cone CCA,B containing any relative
velocities vA,B ∈ CCA,B that will cause a collision at future
time, as Fig. 2 shows. Using the collision cone CCA,B , the
robot can know which heading direction angles will cause
collisions with all of the moving pedestrians tracked by
MHT. The robot then uses these collision cones and the
direction of the sub-goal (θsg) to find the desired heading
direction angle θtd, as Algorithm 1 shows. This sampling-
based search algorithm is motivated by [6].

III. RESULTS

To demonstrate the efficacy and performance of our pro-
posed control policy, we first design a 3D human-robot
interaction simulator using the Gazebo simulator [46] and
the PEDSIM library [47] and then conduct a set of 3D
simulated experiments. This section describes this setup in
greater detail, presents the procedure we used to train our
network, and compares the results to other methods.

Algorithm 1: Search desired direction angle
Input: Sub-goal direction angle θg , pedestrians from

MHT Bpeds, robot linear velocity vAx
,

number of samples N
Output: Optimal direction angle θtd

1 initialize: θtd ← π
2

2 if Bpeds ̸= ∅ then
3 θmin ←∞
4 for i = 1, 2, . . . , N do
5 θu ← sample from [−π, π]
6 free ← True
7 for B in Bpeds do
8 θvA,B

← atan2
(

vAx sin(θu)−vBy

vAx cos(θu)−vBx

)
9 if θvA,B

∈ [θ − β, θ + β] then
10 free ← False
11 break

12 if free then
13 if ∥θu − θg∥ < θmin then
14 θmin ← ∥θu − θg∥
15 θtd ← θu

16 else
17 θtd ← θg

18 return θtd

robot

goal

(a) Lobby

robot

goal

(b) Cumberland

robot

goal

(c) Freiburg

Fig. 3. Gazebo simulation environments.

A. Simulation Configuration

The robot model is a Kobuki Turtlebot 2, which has
a maximum velocity of 0.5 m/s, equipped with a Hokuyo
UTM-30LX lidar and a ZED stereo camera. The Hokuyo
lidar has a maximum range of 30 m, a FOV of 270◦, and
an angular resolution of 0.25◦ while the ZED camera has a
minimum range of 0.3 m, a maximum range of 20 m, and a
FOV of 90◦.

B. Training Procedure

We use stable-baselines3 framework [48] to implement our
DRL network. To train a control policy, we use the Lobby
environment (Fig. 3(a)) with 34 pedestrians in it. The robot
is then repeatedly assigned to reach a random goal from a
random start position within the free space of the map. We
used this procedure to train two different DRL-based control
policies, one using the full reward (2) (DRL-VO) and one
that does not use the heading direction reward, rtd (DRL).



TABLE I
NAVIGATION RESULTS AT DIFFERENT CROWD DENSITIES AND UNSEEN ENVIRONMENTS

Environment Method Success Rate Average Time (s) Average Length (m) Average Speed (m/s)

Lobby world,
35 pedestrians

DWA [4] 0.82 14.18 5.15 0.36
CNN [21] 0.81 14.30 5.40 0.38
A1-RD [24] 0.86 17.82 6.06 0.34
A1-RC [24] 0.77 16.81 6.89 0.41
DRL 0.75 14.30 6.46 0.45
DRL-VO 0.88 11.42 5.31 0.46

Lobby world,
45 pedestrians

DWA [4] 0.77 15.39 5.16 0.34
CNN [21] 0.79 16.65 5.62 0.34
A1-RD [24] 0.76 23.16 6.61 0.29
A1-RC [24] 0.77 14.65 6.28 0.43
DRL 0.69 13.96 6.41 0.46
DRL-VO 0.81 11.65 5.37 0.46

Cumberland world,
35 pedestrians

DWA [4] 0.74 16.28 5.57 0.34
CNN [21] 0.60 24.25 7.08 0.29
A1-RD [24] 0.88 18.04 6.69 0.37
A1-RC [24] 0.77 15.37 6.66 0.43
DRL 0.56 15.79 6.97 0.44
DRL-VO 0.78 12.62 5.84 0.46

Freiburg world,
35 pedestrians

DWA [4] 0.70 18.15 5.78 0.32
CNN [21] 0.57 20.09 6.66 0.33
A1-RD [24] - - - -
A1-RC [24] 0.65 17.11 6.93 0.41
DRL 0.39 18.21 7.61 0.42
DRL-VO 0.76 13.37 6.16 0.46

C. Navigation Results

We test these two DRL-based policies (i.e., DRL and
DRL-VO), along with other’s DRL-based policies [24] (i.e.,
A1-RD and A1-RC), the CNN-based policy [21], and the
DWA planner [4]. To test the ability of the control policy to
generalize to new environments and crowd densities, we use
the following environments (maps shown in Fig. 3):

• Lobby with 35 and 45 pedestrians: test generalization
across different crowd densities.

• Cumberland and Freiburg with 35 pedestrians: test
generalization to unseen environments.

We then compare the performance of the control policies
using the following metrics, which are commonly used in
the autonomous navigation literature [23], [31], [35]:

• Success rate: the fraction of collision-free trials.
• Average time: the average travel time of trials.
• Average length: the average trajectory length of trials.
• Average speed: the average speed during trials.

For each combination of environment and control policy,
we run 4 tests from the same initial conditions, where
each test consists of the robot navigating through the same
sequence of 25 goal points. Although the initial conditions of
each test are the same, each trial yields different navigation
behavior due to sensor noise, social force interactions, etc.

Table I summarizes our results, where we observe three
key phenomena. First, our DRL-VO policy has a much higher
success rate than our DRL policy in each crowd size, while
having a similar average speed. This shows that the proposed
VO-based heading direction reward is beneficial and plays a
key role in enabling the robot to maintain a good balance be-
tween collision avoidance and speed. Second, our DRL-VO
policy has the highest success rate in every situation (except

for the Cumberland with 35 pedestrians), with the largest
advantage in the crowded environments. This indicates that
our policy has strong generalizability to different crowd
sizes and different unseen environments. Third, the average
speed of the robot using our DRL-VO policy remains nearly
constant across all situations, regardless of environment or
crowd density, allowing it to reach the goal most quickly.

IV. CONCLUSION

In this paper, we proposed the DRL-VO control policy
to enable autonomous robot navigation in crowded dynamic
environments. Our approach differs from prior research in
two key ways. First, we propose a new combination of
preprocessed data representations, which can work well in
crowded dynamic environments and bridge the appearance
gap between an imperfect simulation and reality. Specifically,
the robot fuses a short history of lidar data, current pedestrian
kinematics, and a sub-goal point. All of this data is tracked
in the robot’s local frame, making it robust to errors in local-
ization that are common in crowded, dynamic environments.
Second, we design a novel reward function based on velocity
obstacles, which we show to significantly reduce the collision
rate and maintain a constant speed. We demonstrate that our
DRL-VO policy generalizes better and maintains a better
balance between collision avoidance and speed to different
crowd sizes and different unseen environments than other
state-of-the-art model-based and learning-based policies.

ACKNOWLEDGMENT

This research includes calculations carried out on HPC
resources supported in part by the National Science Foun-
dation through major research instrumentation grant number
1625061 and by the US Army Research Laboratory under
contract number W911NF-16-2-0189.



REFERENCES

[1] J.-u. Kim, “Keimyung hospital demonstrates smart autonomous
mobile robot,” https://www.koreabiomed.com/news/articleView.html?
idxno=10585, Mar 2021, (Accessed on 08/24/2021).

[2] J. Blyler, “One big 2020 robot trend that’s hard to miss,”
https://www.designnews.com/automation/2020-robot-trend-could-
explode-2021-and-beyond, Dec 2020, (Accessed on 08/24/2021).

[3] B. Marr, “Demand for these autonomous delivery robots is
skyrocketing during this pandemic,” https://www.forbes.com/sites/
bernardmarr/2020/05/29/demand-for-these-autonomous-delivery-
robots-is-skyrocketing-during-this-pandemic/, May 2020, (Accessed
on 08/24/2021).

[4] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[5] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[6] D. Wilkie, J. Van Den Berg, and D. Manocha, “Generalized velocity
obstacles,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2009, pp. 5573–5578.

[7] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research. Springer, 2011,
pp. 3–19.

[8] S. H. Arul and D. Manocha, “V-rvo: Decentralized multi-agent
collision avoidance using voronoi diagrams and reciprocal velocity
obstacles,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp. 8097–8104.

[9] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic
environments,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 4459–4466, 2019.

[10] X. Shen, E. L. Zhu, Y. R. Stürz, and F. Borrelli, “Collision avoidance in
tightly-constrained environments without coordination: a hierarchical
control approach,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021, pp. 2674–2680.

[11] P. T. Singamaneni, A. Favier, and R. Alami, “Human-aware naviga-
tion planner for diverse human-robot interaction contexts,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2021, pp. 5817–5824.

[12] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical Review E, vol. 51, no. 5, p. 4282, 1995.

[13] G. Ferrer, A. Garrell, and A. Sanfeliu, “Robot companion: A social-
force based approach with human awareness-navigation in crowded
environments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 1688–1694.

[14] M. Sebastian, S. B. Banisetty, and D. Feil-Seifer, “Socially-aware
navigation planner using models of human-human interaction,” in
IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN), 2017, pp. 405–410.

[15] M. Boldrer, M. Andreetto, S. Divan, L. Palopoli, and D. Fontanelli,
“Socially-aware reactive obstacle avoidance strategy based on limit
cycle,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3251–
3258, 2020.

[16] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-end
motion planning for autonomous ground robots,” in IEEE International
Conference on Robotics and Automation, 2017, pp. 1527–1533.

[17] L. Tai, S. Li, and M. Liu, “A deep-network solution towards model-
less obstacle avoidance,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016, pp. 2759–2764.

[18] A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza,
“DroNet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[19] G. Kahn, P. Abbeel, and S. Levine, “Badgr: An autonomous self-
supervised learning-based navigation system,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1312–1319, 2021.

[20] A. Pokle, R. Martı́n-Martı́n, P. Goebel, V. Chow, H. M. Ewald,
J. Yang, Z. Wang, A. Sadeghian, D. Sadigh, S. Savarese et al., “Deep
local trajectory replanning and control for robot navigation,” in 2019
international conference on robotics and automation (ICRA). IEEE,
2019, pp. 5815–5822.

[21] Z. Xie, P. Xin, and P. Dames, “Towards safe navigation through
crowded dynamic environments,” in 2021 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, Sep.
2021, accepted.

[22] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 6252–6259.

[23] T. Fan, P. Long, W. Liu, and J. Pan, “Distributed multi-robot collision
avoidance via deep reinforcement learning for navigation in complex
scenarios,” The International Journal of Robotics Research, vol. 39,
no. 7, pp. 856–892, 2020.

[24] R. Guldenring, M. Görner, N. Hendrich, N. J. Jacobsen, and J. Zhang,
“Learning local planners for human-aware navigation in indoor envi-
ronments,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2020, pp. 6053–6060.

[25] C. Pérez-D’Arpino, C. Liu, P. Goebel, R. Martı́n-Martı́n, and
S. Savarese, “Robot navigation in constrained pedestrian environments
using reinforcement learning,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 1140–1146.

[26] X. Huang, H. Deng, W. Zhang, R. Song, and Y. Li, “Towards multi-
modal perception-based navigation: A deep reinforcement learning
method,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4986–4993, 2021.

[27] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2017, pp. 1343–1350.

[28] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among
dynamic, decision-making agents with deep reinforcement learning,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3052–3059.

[29] ——, “Collision avoidance in pedestrian-rich environments with deep
reinforcement learning,” IEEE Access, vol. 9, pp. 10 357–10 377, 2021.

[30] C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction:
Crowd-aware robot navigation with attention-based deep reinforce-
ment learning,” in 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 2019, pp. 6015–6022.

[31] Y. Chen, C. Liu, B. E. Shi, and M. Liu, “Robot navigation in crowds
by graph convolutional networks with attention learned from human
gaze,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2754–
2761, 2020.

[32] L. Liu, D. Dugas, G. Cesari, R. Siegwart, and R. Dubé, “Robot naviga-
tion in crowded environments using deep reinforcement learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020.

[33] S. Liu, P. Chang, W. Liang, N. Chakraborty, and K. Driggs-Campbell,
“Decentralized structural-rnn for robot crowd navigation with deep
reinforcement learning,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 3517–3524.

[34] C. Chen, S. Hu, P. Nikdel, G. Mori, and M. Savva, “Relational
graph learning for crowd navigation,” in 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,
pp. 10 007–10 013.

[35] A. J. Sathyamoorthy, J. Liang, U. Patel, T. Guan, R. Chandra, and
D. Manocha, “Densecavoid: Real-time navigation in dense crowds
using anticipatory behaviors,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 11 345–11 352.

[36] D. Dugas, J. Nieto, R. Siegwart, and J. J. Chung, “Navrep: Unsu-
pervised representations for reinforcement learning of robot naviga-
tion in dynamic human environments,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
7829–7835.

[37] P. Xu and I. Karamouzas, “Human-inspired multi-agent navigation
using knowledge distillation,” in 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
8105–8112.

[38] U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy, and D. Manocha,
“Dwa-rl: Dynamically feasible deep reinforcement learning policy for
robot navigation among mobile obstacles,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
6057–6063.

[39] Z. Xie and P. Dames, “Drl-vo: Learning to navigate through crowded
dynamic scenes using velocity obstacles,” IEEE Transactions on
Robotics, vol. 39, no. 4, pp. 2700–2719, 2023.

[40] A. Gosavi, “Reinforcement learning: A tutorial survey and recent

https://www.koreabiomed.com/news/articleView.html?idxno=10585
https://www.koreabiomed.com/news/articleView.html?idxno=10585
https://www.designnews.com/automation/2020-robot-trend-could-explode-2021-and-beyond
https://www.designnews.com/automation/2020-robot-trend-could-explode-2021-and-beyond
https://www.forbes.com/sites/bernardmarr/2020/05/29/demand-for-these-autonomous-delivery-robots-is-skyrocketing-during-this-pandemic/
https://www.forbes.com/sites/bernardmarr/2020/05/29/demand-for-these-autonomous-delivery-robots-is-skyrocketing-during-this-pandemic/
https://www.forbes.com/sites/bernardmarr/2020/05/29/demand-for-these-autonomous-delivery-robots-is-skyrocketing-during-this-pandemic/


advances,” INFORMS Journal on Computing, vol. 21, no. 2, pp. 178–
192, 2009.

[41] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[42] K. Yoon, Y.-m. Song, and M. Jeon, “Multiple hypothesis tracking
algorithm for multi-target multi-camera tracking with disjoint views,”
IET Image Processing, vol. 12, no. 7, pp. 1175–1184, 2018.

[43] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Sieg-
wart, and J. Nieto, “Reinforced imitation: Sample efficient deep
reinforcement learning for mapless navigation by leveraging prior
demonstrations,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 4423–4430, 2018.

[44] R. C. Coulter, “Implementation of the pure pursuit path tracking
algorithm,” Carnegie-Mellon UNIV Pittsburgh PA Robotics INST,
Tech. Rep., 1992.

[45] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[46] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, 2004,
pp. 2149–2154.

[47] C. Gloor, “PEDSIM: Pedestrian crowd simulation,” URL
http://pedsim.silmaril.org, vol. 5, no. 1, 2016.

[48] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and
N. Dormann, “Stable baselines3,” https://github.com/DLR-RM/stable-
baselines3, 2019.

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3

	Introduction
	Navigation Policy
	Problem Formulation
	Observation Space
	Pedestrian Kinematics Observation
	Lidar History Observation
	Goal Position Observation

	Action Space
	Network Architecture
	Reward Function
	Reaching the Goal
	Passive Collision Avoidance
	Path Smoothness
	Active Heading Direction


	Results
	Simulation Configuration
	Training Procedure
	Navigation Results

	Conclusion
	References

